If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9h+2-5h^2=0
a = -5; b = 9; c = +2;
Δ = b2-4ac
Δ = 92-4·(-5)·2
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-11}{2*-5}=\frac{-20}{-10} =+2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+11}{2*-5}=\frac{2}{-10} =-1/5 $
| 18h^2+15h–18=0 | | (6n+1)^2+5(6n+1)-6=0 | | 2/x+1=7/x-10 | | -12=-6+7x-5 | | 5/2(2x+18)=1/5(25x+30) | | 8(6v+8)-7(8+8v)=-3v-5v | | 4n+4/2=10 | | 1.8(2x-4)=-3.6 | | 10=x√3 | | 5b-12=8b+24 | | 4n-4/2=10 | | -8(6x-6)+7(7x-5)-9=5-9 | | 4j-2j+2j-3j=11 | | 3a-2a-a+5a=15 | | 18x=8x+80 | | 4x+02x-5x=-19 | | 2x-3(4x-10)=-60 | | 2d+2d+2d-4d=16 | | F(x)=15x+4;x=-3 | | -20+15z=140 | | -6(1-4p)+1=8(3p-1) | | -h+-12h+15h-h=-19 | | 50y-30=320 | | -5/6x+83=-22 | | -3x+3(-3x-16)=60 | | 4q-q=3 | | 5x+5+6x=-83 | | 8b-8b+3b=12 | | -4x-5(-6x+13)=195 | | (3r+4)(r-15)=3r^2-11r-20 | | 3m+9=7 | | 8p-7/3+2p-1/4=5-2p |